
Pisces User Manual
Release 1.0 alpha 1

Jeremy Hylton

April 27, 2000

Corporation for National Research Initiatives
Reston, VA

E-mail: jeremy@alum.mit.edu

Abstract

Pisces is a Python implementation of the SPKI certificate standard. This document provides a brief
introduction to SPKI (the Simple Public Key Infrastructure) and describes the tools available in the
Pisces distribution. Pisces contains a library and command-line utility for creating and using SPKI
certificates in Python. It also contains a toy secure socket library that demonstrates the use of the
library.

Contents

1 Introduction 2

2 An Example 2

3 Command-Line Utility: spkitool.py 4
3.1 spkitool.py command reference . 5

4 Other command-line scripts 7
4.1 pyarrowd.py command reference . 7

5 Pisces Library Reference 7
5.1 pisces.algid – Constants for PKCS #1 AlgorithmIdentifiers 7
5.2 pisces.asn1 – Encode and decode ASN.1 BER format . 8
5.3 pisces.cryptrand – Interface to cryptographic random number generators 10
5.4 pisces.egdlib – Interface to the Entropy Gathering Daemon 10
5.5 pisces.hmac – Keyed-hashing for message authentication . 10
5.6 pisces.pkcs1 – A PKCS #1 wrapper for Crypto.PublicKey.RSA keys 11
5.7 pisces.pwcrypt – Support for password-based cryptography (PKCS #5) 12
5.8 pisces.utils – Internal pisces utility functions . 13
5.9 pisces.yarrow – Yarrow random number generator . 13
5.10 pisces.ttls – Trivial transport-layer security . 15
5.11 pisces.spkilib – SPKI package . 15
5.12 pisces.spkilib.config – Configuration and command-line argument handling 15
5.13 pisces.spkilib.database – Store keys and certificates in text file 15
5.14 pisces.spkilib.keystore – Abstract storage interface for keys and certifications 17
5.15 pisces.spkilib.sexp – Support routines from S-expressions 18
5.16 pisces.spkilib.sexpsocket – Send and receive s-exps over sockets 19

5.17 pisces.spkilib.spki – Core SPKI implementation . 19
5.18 pisces.spkilib.verify – Certificate chain verification . 23

A Installation 24

Acknowledgements. Roger Masse and Guido van Rossum made helpful comments on library design. The
HMAC implementation is based on an earlier version by Barry Warsaw. This work was supported in part by
the Advanced Research Projects Agency of the United States Department of Defense under grant MDA972-
95-1-0003.

1 Introduction

SPKI (Simple Public Key Infrastructure) is an experimental protocol developed by an IETF working group
[Ell99]. This protocol defines public key certificate and signature formats, along with many associated
objects, to support security for a wide range of applications. The SPKI protocol is simple to understand,
use, and implement.

The CNRI SPKI library provides an implementation of the SPKI protocol for the Python language and
a command-line utility, spkitool, for creating and using keys and certificates. This document primarily
describes the utility.

Before going on to a detailed look at spkitool, we offer a brief introduction to the SPKI protocol based on the
language in RFC 2693 [2]. For a more thorough discussion of SPKI, RFC 2693 itself, which lays out the basic
theory underlying the protocol, and Carl Ellison’s SPKI Web page, http://world.std.com/ cme/html/spki.html.

A certificate is a signed object that transfers some authority for the certificate’s issuer to its subject. The
main purpose of a SPKI certificate is to authorize the subject to perform some action. The subject and issuer
are principals, i.e. a cryptographic key capable of generating a signature. The principals are represented by
the key itself, a hash of the key, or a name that is bound to the key. A certificate that gives some authority
to a key is, in effect, transferring some authority to the keyholder (anyone with access to the private key).
The principal speaks for the keyholder by creating signed objects.

Unlike other public key infrastructures, SPKI principals are not named users, they are just keys. As it turns
out, most authorization decisions are based not on the name of the keyholder, but on some attribute of the
keyholder, e.g. whether she is a member of a particular organization, has paid some access fee, etc. A SPKI
certificate can carry any authorizations or attributes the creator wishes; the specific interpretation is left to
the applications that uses them.

A typical use of SPKI certificates is to implement a protected subsystem [3]. The root of each certificate’s
authority is an access control list (ACL).

The basic SPKI theory and protocol describe formats and uses for keys, certificates, and many associated
objects. They do not describe protocols or APIs for transferring certificates between programs or storing
them on disk. The implementation of Pisces SPKI library makes a number of concrete decisions about issues
like these.

2 An Example

The script example.py in the scripts directory shows how you could use Pisces to perform access control
on an object. The example is a bank account object, with methods deposit, withdraw, checkBalance, and
setBalance.

The example scenario involves several different keyholders. This scenario isn’t meant to be an exact model

2 2 An Example

of the real world or a suggestion for how to model a bank’s trust relationships; rather, it demonstrates the
various ways in which keys and certificates can be used. The Pisces distribution contains keys and certificates
in the test/example directory. The text below explains the commands used to create them.

The bank has a key that is on the access control list for bank accounts; it is also used to delegate permission
to bank employees and account holders. The bank grant the following permissions to keyholders:

The auditor has permission to check the balance of the account. The adjuster has permission to set the
balance of the account. The account holder has permission to check the balance of the account and deposit
and withdraw money.

The account holder delegates her permissions to these keyholders:

The spouse has all the permissions that the account holder has. The employer has permissions to deposit
money.

The permissions are represent as a SPKI tag set.

The following commands show how to create each of the keys described above. We start by creating a default
key. The other keys will each be issued with names relative to the default key. Also note that the --unsafe
argument is used.

spkitool.py -d ../test/example create -b 512 --unsafe --default

spkitool.py -d ../test/example create -b 512 --unsafe bank

spkitool.py -d ../test/example create -b 512 --unsafe auditor

spkitool.py -d ../test/example create -b 512 --unsafe adjuster

spkitool.py -d ../test/example create -b 512 --unsafe account_holder

spkitool.py -d ../test/example create -b 512 --unsafe spouse

spkitool.py -d ../test/example create -b 512 --unsafe employer

Now that all the keys are created, the list command will show the hashes for each of them.

spkitool.py -d ../test/example list

PRIVATE KEYS

(hash md5 |kcMoJXXqOptLRRZfy4iWqA==|) default

(hash md5 |j5r4iybdTiCY5W/OEMVykQ==|)

(hash md5 |C7ZoGtjRIpwpiMj3CrwFBw==|)

(hash md5 |+39QQ2EKpFCcJvM3X3W2tA==|)

(hash md5 |1NECGruVdAzXN5cpsH0Bdw==|)

(hash md5 |I5kaokdnKniSiXLoUh2y/A==|)

(hash md5 |UUWuzINnGXAxIl4H1OLFpw==|)

NAMES

Names issued by key (hash md5 |kcMoJXXqOptLRRZfy4iWqA==|)

"auditor": (hash md5 |j5r4iybdTiCY5W/OEMVykQ==|)

"employer": (hash md5 |+39QQ2EKpFCcJvM3X3W2tA==|)

"adjuster": (hash md5 |1NECGruVdAzXN5cpsH0Bdw==|)

"bank": (hash md5 |I5kaokdnKniSiXLoUh2y/A==|)

"spouse": (hash md5 |UUWuzINnGXAxIl4H1OLFpw==|)

"account_holder": (hash md5 |C7ZoGtjRIpwpiMj3CrwFBw==|)

PUBLIC KEYS

(hash md5 |j5r4iybdTiCY5W/OEMVykQ==|)

(hash md5 |kcMoJXXqOptLRRZfy4iWqA==|)

(hash md5 |C7ZoGtjRIpwpiMj3CrwFBw==|)

(hash md5 |+39QQ2EKpFCcJvM3X3W2tA==|)

(hash md5 |1NECGruVdAzXN5cpsH0Bdw==|)

(hash md5 |I5kaokdnKniSiXLoUh2y/A==|)

(hash md5 |UUWuzINnGXAxIl4H1OLFpw==|)

3

Now we need to create a collection of certificates that authorize the keyholders to act on the bank account.
We’ll start with the access control list for the account:

spkitool.py -d ../test/example acl --subject bank -p ’(*)’ --db \

../test/example/acl

The access control list, which is newly created, looks like this:

debugdb.py ../test/example/acl

../test/example/acl

(entry

(hash md5 |I5kaokdnKniSiXLoUh2y/A==|)

(tag

(*)))

spkitool.py -d ../test/example cert --issuer bank --subject auditor \

--after now --permission ’(* set checkBalance)’

spkitool.py -d ../test/example cert --issuer bank --subject adjuster \

--after now --permission ’(* set setBalance)’

spkitool.py -d ../test/example cert --issuer bank --subject account_holder \

--after now --before 2002-04-01_00:00:00 \

--permission ’(* set checkBalance deposit withdraw)’

spkitool.py -d ../test/example cert --issuer account_holder \

--subject spouse --after now --permission ’(*)’

spkitool.py -d ../test/example cert --issuer account_holder \

--subject employer --after now --permission ’(* set deposit)’

Now all the permissions should be in place. The test/example directory contains a pickled bank account
object in account.pyp. The example.py script has rather complicated calling conventions. There is a lot of
state necessary for checking permissions – the ACL, the certs and keys, and the key of the caller; each of
these items is passed on the command line. The principal making the caller is specified with the -p name
option and the method being invoked is specified with the -m method name option.

python example.py -d ../test/example -o ../test/example/account.pyp \

-a ../test/example/acl -k ../test/example/keys \

-p account_holder -m checkBalance

python example.py -d ../test/example -o ../test/example/account.pyp \

-a ../test/example/acl -k ../test/example/keys \

-p adjuster -m checkBalance

python example.py -d ../test/example -o ../test/example/account.pyp \

-a ../test/example/acl -k ../test/example/keys \

-p employer -m deposit 100

3 Command-Line Utility: spkitool.py

The spkitool.py utility supports several different commands. The specific command to run is passed as an
argument to spkitool.py. A typical usage would look like this:

% spkitool.py [generic options] command [command options]

The options and commands are described in the next section.

It may be helpful to think of spkitool.py as an analog to the GPG or PGP command-line tools. It manages

4 3 Command-Line Utility: spkitool.py

a collection of keys and certificates stored on your local system.

You need to create a directory that spkitool.py will use to store keys and certificates. The default directory
is /.spki, but you can change this by setting the $SPKIHOME environment variable or using the generic -d
option to spkitool.py.

Many of the spkitool commands require the use of a public-private key pair. You should create a default key
pair the first time you use spkitool. The default key will be used for all commands that require a key, unless
you specify a different key. The easiest way to specify a key is with a SPKI name, which can be created with
the name command described below.

3.1 spkitool.py command reference

spkitool.py [-v] [-h [cmd]] [-d dir] command [command-options]
This script can be invoked to run any of the commands listed below. It supports several generic
options that must be listed before the command. Each command also supports command-specific
options, which must be listed after the command name.

The -v option causes verbose output while the command runs.

The -h option prints help. If -h is specified by itself, a list of all commands is printed. If -h is followed
by a command name, detailed help for that command is printed. The name ’all’ is used as an argument,
detailed help is printed for each command.

The -d dir specifies the location of the user’s spkitool configuration directory.

The spkitool script supports the following commands:

acl -s/--subject key -p permissions [-o output] [-b/--before time] [-a/--after time]
[--test URI] [-d/--delegate] [--db acl]

Creates a certificate for an access control list (Entry). The subject can be a hash of a key or a name.
If the subject is a name, the name is interpreted relative to the user’s default key.

The permissions should be a text representation of a SPKI sexp. This is a little clunky, but it’s hard
to come up with a general interface for something that is essentially application-specific.

If the --db option is used, the Entry is added to the database.ACL file at the specified path. If this
option is used, it overrides the -o option. Will create a new ACL if one does not exist.

The -d/--delegate option allows permissions to be delegated. By default, delegation is disabled.

The before/after/test modifiers are the same as for the cert command. They affect the validity con-
straints.

cert -s/--subject -p/--permission permission [-i/--issuer] [-b/--before time]
[-a/--after time] [-t/--test URI] [-d/--delegate] [-k/--key]

Create a new certificate. The certificate has the following parts: subject, issuer, validity, and permis-
sions. It may also have a delegation tag. Each of these parts can be specified using a different option;
each option has a short name and a long name.

Note: To create a name certificate, use the name command.

The options for the cert command are list below. Each take a single argument following the option
name.

optional: --issuer (-i)

The hash or name of the key to use as issuer. Will use the default key as issuer otherwise.

required: --subject (-s)

The hash or name of the key that is the subject of the certificate.

optional: --before (-b)
optional: --after (-a)

3.1 spkitool.py command reference 5

These options limit the period of time for which the certificate is valid. The time format is YYYY-
MM-DD HH:MM:SS. You can also use the string ”now” to indicate the current time.

optional: --test (-t)

Specify an online validity test for the certificate. The argument should be the URL for the test. This
optional currently has no associated implementation; although it can be included in the certificate, the
test will not be performed.

required: --permission (-p)

Specify the permissions that are being granted to the subject key. The argument must be an S-
expression in human-readable form for the permissions. The permissions will be wrapped in a (tag ...)
S-expression.

optional: --delegate (-d)

Allow subject to delegate permission. Default is to disallow delegation.

optional: --key (-k)

Include the key of the issuer with the certificate. By default, the certificate does not include the key
itself, only the hash of the key.

create [-b bits] [--unsafe] [--replace] [--dup] [--default|name]
Create a key pair with label as specified by user. Add the key pair to the user’s key file and add the
public key to the user’s ACL. The user will be prompted for a pass phrase to encrypt the private key.
Currently on the rsa-pkcs1-md5 algorithm is supported.

Options:

--unsafe: use the user’s PID as pass phrase

--replace: replace an existing default key

-b NNNN: number of bits for key pair (default 1024)

--dup: create a name cert even if name is already used

Note: The SPKI protocol allows multiple keys to be bound to the same name, which allows the creation
of a group. But multiple keys with the same name presents a problem for naming private keys, because
the name no longer unambiguously refers to a single key.

export [-o output] [--canonical] <hash-or-name>
Export a public key from the store. The key may be specified by its hash or its name. The -o flag can
be used to specify a file to place the key; if no file is specified, the key will be printed on stdout.

Keys are output in base64 encoding by default. Use the --canonical flag to specify the canonical
(binary) encoding instead.

import [path]
Load a new public key or certificate into the keystore. The object will be loaded from a file containing
either the canonical or base64 encoding of the S-expression. If no path is specified, the object will be
read from stdin.

For a certificate to be useful in verifying a certificate chain, it must be signed. A public key, however,
needs no signature.

list [--public] [--private] [--name]
List all the keys stored in the KeyStore and all the name certificates issued by the private keys. For
private keys, the hash of the corresponding public key is listed. As a result, the same hash should
appear in the private and public lists.

Specifying the options, limits the listing to only the specified sections.

name -n/--name name -h/--hash hash [-i/--issuer principal] [-o output]
Create a name certificate. Can be used to associate a name with a public key on the key server.

6 3 Command-Line Utility: spkitool.py

The hash designates the public key that the name will be bound to. The hash can either by the
advanced form of a SPKI hash object, or just the base64 encoded digest. Thus, either of the following
is allowed: ’(hash md5 —hTK6mv8Nbspy9jsljfb2DQ==—)’ or ’hTK6mv8Nbspy9jsljfb2DQ==’.

By default, the issuer is the user’s default key. To use a different key, the user should specify the name
or hash of the key with the --issuer argument.

The -o option can be used to make a local copy of the name cert.

This command needs to be extended with validity handling.

show [-i input] [-o output]
Read in an arbitrary SPKI object and display it in human-readable form. The show command will
read the object from stdin and display it on stdout. The source and destination can be changed with
the -i and -o arguments.

sign [-s/--signer name] [-o output] file
Create a digital signature for the contents of the specified file. By default, the signature is placed
stored as file.sig, but you can use the -o option to specify a different output location.

The signature is created using the default key, unless the --signer option is used to specify a different
key. The --signer option will accept the name or hash of a key.

verify [-i signaturefile] file
Verify a digital signature of a file. The default behavior is to look for the signature in file.sig. The -i
option can be used to specify a different path for the signature.

4 Other command-line scripts

4.1 pyarrowd.py command reference

pyarrowd.py [-h host] [-p port]
A Yarrow daemon, only supported on Solaris and Linux so far.

Simple protocol for requesting random bytes over a socket. The client requests random data by sending
a 32-bit int in network byte-order. The server will return that many bytes of random data. The return
format is a 32-bit in in network byte order, specifying length of return value, followed by that many
bytes of data. The client can issue multiple requests on a single socket.

The server runs on port 12000 by default. The specific host and port can be set with the -h host and
-p port options, respectively.

The Yarrow daemon uses a few system utilities that should produce data that is somewhat hard to
predict. There has been little effort put into choosing the utilities or estimating the entropy they
produce. These utilities are determined by the fast sources and slow sources global variables,
which are only defined for Linux and Solaris.

5 Pisces Library Reference

5.1 pisces.algid – Constants for PKCS #1 AlgorithmIdentifiers

This module implements the AlgorithmIdentifer objects required to implement PKCS #1. It defines one
class, AlgorithmIdentifier, and several instances that are used as constants in other modules.

AlgorithmIdentifier([obj, [params]])
AlgorithmIdentifier is a subclass of pisces.asn1.ASN1Object that represents the AlgorithmIden-
tifier structure defined by PKCS #1 and #7. In addition to the methods defined by ASN1Object,

7

it has three public attributes: oid, the pisces.asn1.OID of the algorithm, params, the parameters
optionally defined for the algorithm, and name, the name of algorithm. params and name may be None.

The constructor can be called two ways. It can be called with a single sequence that matches the
following ASN.1 defintion:

AlgorithmIdentifier ::= SEQUENCE {

algorithm OBJECT IDENTIFIER,

parameters ANY DEFINED BY algorithm OPTIONAL}

It can also be called with the algorithm and parameters components as arguments. algorithm must an
OID. If parameters is omitted, it is treated as None.

The module defines the attributes listed in the table below, each of which is an instance of pisces.asn1.OID.

attribute OID name
oid dsa 1.2.840.10040.4.1 dsa
oid dsa sha1 1.2.840.10040.4.3 dsaWithSha1
oid rsa 1.2.840.113549.1.1.1 rsa
oid rsa md2 1.2.840.113549.1.1.2 md2withRSAEncryption
oid rsa md5 1.2.840.113549.1.1.4 md5withRSAEncryption
oid md2 1.2.840.113549.2.2 md2
oid md5 1.2.840.113549.2.5 md5
oid sha 1.3.14.3.2.26 sha

5.2 pisces.asn1 – Encode and decode ASN.1 BER format

This module provides a parser for ASN.1 objects encoded using BER. The parser produces ASN1Object
instances that can be converted back to BER encoding using the encode method.

parse(buf)
Parse string buf and return an ASN1Object instance that it encodes. Raises ValueError if invalid
data is passed to it. Warning: This code could be more robust; other exceptions may be raised for
particular invalid inputs.

ASN1Object(val)
The ASN1Object class is the abstract base class of all the objects generated by parse. The constructor
takes a single argument val , a parsed ASN.1 object.

Subclasses of ASN1Object define the following method and attribute:

atomic: True if the object is atomic; false if it is a container.

encode([io])
Returns a string containing the BER encoding of the ASN.1 object. If a file-like object is passed
as io, the encoding will be written to the file instead.

The following subclasses of ASN1Object are defined in this module. Methods defined only for single subclasses
are also described here.

Sequence()
Sequence implements the ASN.1 type SEQUENCE, an ordered collection of one or more types. In-
stances can are also Python sequence objects.

Set()
Set implements the ASN.1 type SET, an unorderd collection of one or more types. Instances can are
also Python sequence objects, where the order depends on the specific order of elements in the original
encoding.

8 5 Pisces Library Reference

UTCTime()
UTCTime implements the standard ASN.1 type for time expressed in GMT. The X.509 standards note
that UTCTime values shall be expressed Greenwich Mean Time (Zulu) and shall include seconds (i.e.,
times are YYMMDDHHMMSSZ), even where the number of seconds is zero. Conforming systems shall
interpret the year field (YY) as follows:

Where YY is greater than or equal to 50, the year shall be inter- preted as 19YY; and

Where YY is less than 50, the year shall be interpreted as 20YY.

UTCTime instances can be compared to each other and support ordering in the natural way.

Contextual()
Contextual is a wrapper for ASN.1 types defined using CHOICE. For contextual encoding, it isn’t
possible to tell what the type of the contained object is without looking at the ASN.1 type declaration.
This module is designed for parsing independently of the type declaration, which works for every case
exception this one.

In the case of contextual encoding, this object is returned. When the decoded structure is actually
used, it should be clear whether this is, e.g., an OPTIONAL integer type, some other tagged, known
type, or an encoded CHOICE. Clients should call the decode method when the encoding includes the
full DER encoding. Clients should call choose when the value doesn’t have the appropriate tag/len
info.

Contextual has two extra methods:

decode()
Return the decoded object. This method should be called when the encoding includes the tag
and length.

choose(tag)
Return the decoded object, using tag as the ASN.1 tag. This method should be called when the
containing type declaration uses CHOICE and the tag is not included in the encoding.

Boolean()
Boolean is the ASN.1 Boolean type. Instances of this class implement nonzero , so they can be
used in Python conditionals.

OID()
An ASN.1 Object Identifier. Can be compared to other OID objects and used as a dictionary key.

Other ASN.1 types are represented using Python’s builtin datatypes. This table summarizes the ASN.1
types supported.

ASN.1 type Python type
INTEGER int
BIT STRING string
OCTET STRING string
NULL None
PrintableString string
T61String string
IA5String string

display(obj)
Pretty-print an ASN1Object instance.

Displayer([oids])
The Displayer class creates pretty-printers for ASN.1 objects that will print labels for certain well-
known oids. The constructor argument oids is a mapping from OID object to string names.

parseCfg(io)
Reads a configuration file from io, which must be a file-like object ready for reading. Returns a

5.2 pisces.asn1 – Encode and decode ASN.1 BER format 9

dictionary mapping OIDs to strings that describe the OIDs. This function is provided for compatibility
with Peter Gutmann’s dumpasn1 program. An example of the configuration file is available at
http://www.cs.auckland.ac.nz/ pgut001/dumpasn1.cfg.

5.3 pisces.cryptrand – Interface to cryptographic random number generators

This module provides a common interface to the various cryptographic random numbers that may be available
on a particular system. The module defines one function random and one constant implementation, which
is a string that describes the implementation used for random.

random(num)
Return num bytes of random data.

The implementation depends on the random number generators available on a particular system. On Linux
systems, /dev/random is used. This module can also use the Yarrow daemon provided with Pisces or the
Entropy Gathering Daemon from gpg if it is installed in ’ /.gnupg/entropy.

WARNING: If no cryptographic random number generator is available, Python’s whrandom implementation
will be used. The is not a cryptographic random number generator.

5.4 pisces.egdlib – Interface to the Entropy Gathering Daemon

EGD (Entropy Gathering Daemon) is a tool designed to be used by GPG (GNU Privacy Guard) on systems
that do not have a /dev/random. It is a user-space program that culls entropy from system statistics reported
by various commands like w or vmstat. EGD is available from http://www.lothar.com/tech/crypto/.

This module implements an interface for request random data from EGD. For most purposes, it is better
to use the interface provided by pisces.cryptrand which provides an abstraction layer on top of this and
other modules.

EGD(path)
The EGD class provides a high-level interface for communicating with an EGD daemon. The constructor
takes that path of the Unix-domain socket used by the daemon.

EGD defines the following methods:

getAvailableEntropy()
Returns the number of bits of entropy currently available.

getRandomBytes(num)
Returns up to num bytes of random data. It will return less than num bytes if sufficient entropy
is not available.

getRandomBytesSync(num)
Returns exactly num bytes of random data. WARNING: This method does not appear to behave
correctly, perhaps because of a bug in EGD.

getPID()
Returns the daemon’s process id.

5.5 pisces.hmac – Keyed-hashing for message authentication

This module implements HMAC, a method for message authentication using cryptographic hash functions
described in RFC 2104. It is a slight improvement to an earlier version written by Barry Warsaw.

HMAC(hashmodule)
Instances of the HMAC class implement HMAC for a specific hash function. The constructor takes the

10 5 Pisces Library Reference

hashmodule as an argument. It must be a module that follows conforms to the interface of the hashes
in Crypto.Hash. This requires that the module have a digestsize attribute and a new function.

HMAC provides the following method:

hash(key, block)
Produce the HMAC hash for the given string, block . Key is the shared secret authentication key,
as a string. For best results RFC 2104 recommends that the length of key should be at least as
large as the underlying hash’s output block size, but this is not enforced.
If the key length is greater than the hash algorithm’s basic compression function’s block size
(typically 64 bytes), then it is hashed to get the used key value. If it is less than this block size,
it is padded by appending enough zero bytes to the key.

HMACSpecializer(hashmodule, key)
Instances of the HMACSpecializer class implement an HMAC for a particular hash module and key.
If many HMACs will be computed with the same key, it is more efficient to use this class than HMAC.
There is no other reason to use this class.

HMACSpecializer provides the following method:

hash(block)
Produce the HMAC hash for the given string, block . See HMAC.hash for details.

5.6 pisces.pkcs1 – A PKCS #1 wrapper for Crypto.PublicKey.RSA keys

This module implements that PKCS #1 RSA encryption standard. It must be used in conjunction with
Crypto.PublicKey.RSA, which provides the cryptographic primitives.

The PKCS #1 standard is available from RSA Labs. As of April 10, 2000 the url is
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/.

This module defines several classes. The primary interfaces are the RSA pkcs1 class and
getSignatureImpl() function, which returns an appropriate subclass of DigestWithRSA.

RSA pkcs1(key)
The RSA pkcs1 class is a wrapper for Crypto.PublicKey.RSA key objects that implements the PKCS
#1 standard. Its encryption and decryption methods handle objects that are properly padded and
encoded for interchange with other PKCS #1 implementations.

The constructor accepts either a key object generated by Crypto.PublicKey.RSA or a tuple of key
components that can be used to construct one.

RSA pkcs1 defines the following methods:

getPublicComponents()
Returns the public components of the key, e and n.

getPrivateComponents()
Returns the public components of the key, d , p and q .

encryptPublic(plain)
Returns the plaintext plain encrypted with the public key. Raises ValueError if the plaintext is
too long for the key.

decryptPublic(cipher)
Returns the plaintext obtained by decrypting cipher with the public key. Raises ValueError if
the ciphertext is too long for the key.

encryptPrivate(plain)
Returns the plaintext plain encrypted with the private key. Raises ValueError if the plaintext is
too long for the key.

5.6 pisces.pkcs1 – A PKCS #1 wrapper for Crypto.PublicKey.RSA keys 11

decryptPrivate(cipher)
Returns the plaintext obtained by decrypting cipher with the private key. Raises ValueError if
the ciphertext is too long for the key.

DigestWithRSA(key)
The DigestWithRSA is an abstract base class that defines sign and verify methods that perform
digital signature operations as defined by PKCS #1. Subclasses of DigestWithRSA implement a
digest method that is used to generate the approriate message digest of the signed object.

Subclasses must also define two attributes that identify the hash algorithm: digAlgId, a
pisces.algid.AlgorithmIdentifier, and oid, a pisces.asn1.OID.

The constructor takes an RSA pkcs1 instance.

DigestWithRSA defines the following methods:

sign(data)
Returns a string representing the signature of data. Internally, encrypts a digest of data with the
private key.

verify(data, sig)
Verify that the signature sig matches the original string data. Returns 1 if the signature is correct
and 0 if it is not. Raises a ValueError if the hash algorithm used with the signature does not
match the hash algorithm the instance supports.

digest(data)
Returns a digest of data using the hash function defined for the instance. Note that this method
is defined in subclasses of DigestWithRSA.

MD5withRSA(key)
A subclass of DigestWithRSA that supports the MD5 hash algorithm.

MD2withRSA(key)
A subclass of DigestWithRSA that supports the MD2 hash algorithm.

getSignatureImpl(algorithmId)
Returns a subclass of DigestWithRSA that supports the hash algorithm described by algorithmId ,
which must be an instance of pisces.asn1.OID. Currently, MD2 and MD5 are the only supported
hash algorithms.

5.7 pisces.pwcrypt – Support for password-based cryptography (PKCS #5)

This module supports the use of password-based cryptography for encryption and message authenti-
cation using key derivation functions. This module is based on recommendations in PKCS #5 v2.0:
Password-Based Crypotgraphy, RSA Laboratories, March 25, 1999. The recommendations are available
from http://www.rsasecurity.com/rsalabs/pkcs/pkcs-5/index.html.

WARNING: It is not very practical to use Python for generating keys from passphrases; it is merely conve-
nient. The key derivation process should take a long time, to thwart an attacker who attempts a dictionary
attack on the password. But it can’t take so long that the user grows impatient waiting for the key to
be generated. The attacker could implement her brute force search in optimized C, which would be much
faster than this Python implementation. Thus, this module provides much less security-for-the-wait that an
optimized C version would.

KeyDerivationFactory(keylen, saltlen, [iterations], [hash], [labels])
A KeyDerivationFactory instance will generate keys that are keylen bytes long with saltlen bytes of
salt. The optional arguments specify: the number of iterations of the the F function, the default value
is 1000; the hash function to use, the default is SHA. The hash argument must support the interface
implemented by Crypto.Hash hashes.

12 5 Pisces Library Reference

Labels are an optional feature. The labels argument accepts a sequence of strings. If several keys
with the same generation parameters are going to be created, the salt should contain some text that
identifies the particular use of the key. These are the labels. When createKey is called, it will check
to see if the label used is valid.

The design of this class is explained carefully in the PKCS #5 document. The implementation uses
HMAC plus a hash function as its pseudorandom function. The default hash is SHA.

createKey(password [, label])
Create a new key generated from the string password and optionally the string label . Returns
the salt, the number of iterations of the F function, the name of the hash function, and the key
itself. Raises ValueError if label is specified and does not match one of the labels specified in
the constructor.

recreateKey(password, salt)
Creates a key generated from the string password and the explicitly supplied salt string. Re-
turns only the key. This method should only be used to recreate a key previously generated by
createKey.

5.8 pisces.utils – Internal pisces utility functions

loadModule(name)
Import the module name and return it. If name is a module within a package, return the final module
object and not the package.

xor(s1, s2)
Return the bytewise-exclusive-or of two strings.

5.9 pisces.yarrow – Yarrow random number generator

This module implements a Yarrow-160 cryptographic pseudorandom number generator for Unix. It is based
on a design described in the following paper: John Kelsey, Bruce Schneier, and Niels Ferguson: “Yarrow-
160: Notes on the Design and Analysis of the Yarrow Cryptographic Pseudorandom Number Generator,”
http://www.counterpane.com/yarrow.html. The documentation here assumes you are familiar with the design
described there.

Counterpane also provides an implementation, Yarrow 0.8.71, for Windows developed by Ari Benbasat. The
implementation appears to diverge from the design document in numerous respects, e.g. entropy estimation
and generating pseudorandom ouputs from the pool values.

A note on the implementation: The Yarrow design paper uses 3DES in counter mode. Counter mode is fairly
unusual. It is not implemented in the Python Crypto Toolkit or OpenSSL; it only merits a one-paragraph
mention in Schneier’s book Applied Cryptography. The implementation here uses 3DES in ECB mode with
a counter. The counter is encrypted with the key, then XORed with the plaintext.

EntroypSource()
EntropySource instances track the amount of entropy available from a single source. It is used inter-
nally by EntropyPool.

The design document proposes three different methods for Entropy Estimation: It estimates the entropy
using three different methods and returns the lowest result.

This implementation, following Benbasat, uses two estimates: one provided by the programming who
supplies the input and another generator from zlib.

addInput(buf, estbits)
Update the estimate to account for the entropy in buf with estbits bits of entropy. Both the
actual data and the user-supplied estimare are necessary to update the internal entropy estimate.

5.8 pisces.utils – Internal pisces utility functions 13

getEntropy()
Return the minimum estimated entropy currently available.

reset()
Reset the estimates to zero.

EntroypPool(threshold, count)
The EntropyPool collects samples from entropy sources. The design document described an Entropy
Accumulator, which collects samples from entropy sources and puts them into two pools. This class
implements the pools.

A pool contains the running hash of all inputs fed into it since the accumulate method was called.
The accumulate method is called by the Yarrow class during reseed operations.

The pool keeps estimates about the entropy of each individual source, although the digest is over
all sources. Each souce must be initialized by calling addSouce and passing the source’s name. The
instance variable sources maps from names to EntropySource instances.

The constructor takes two arguments, the threshold and a count . A pool is ready to be used when at
least count of its sources have an entropy greater than or equal to threshold . The isReady method
returns true when this condition is met.

EntropyPool instances are thread safe, because a typical use is to have multiple threads adding entropy
to the pool.

addSource(name)
Prepare pool for accepting input from source named source.

addInput(source, buf, estbits)
Update hash of pool source with buf containing estbits estimated entropy.
If the source was not initialized via addSource, this method will raise a KeyError.

isReady()
Returns true if there is enough entropy in the pool. Enough is defined by the threshold and count
arguments to the constructor.

accumulate()
Return the current pool digest and reset the pool.

Yarrow()
The Yarrow class generates random data and managed the fast and slow entropy pools for seeding the
PRNG. These functions are described as three seperate entities in the design document: “generating
pseudorandom outputs,” “reseed mechanism,” and “reseed control.”

The main API for this class is three methods: getOutput, addSource, and addInput.

A client may also call forceReseed and allowReseed to cause a reseed to occur. However, reseed
control is implemented internally and should occur regularly even if the client does not call these
methods.

The reseed methods take an optional ticks argument that affects how long the reseed will take. The
class implements a default number, which should be sufficient, but the user can override it.

The Yarrow class is not threadsafe.

getOuput(num)
Return num bytes of random data.

addSource(sourceName)
Intialize a new entropy source named sourceName.

addInput(source, input, estbits)
Add input string to source pool, estimating estbits of entropy.

forceReseed([ticks])
Force a reseed.

14 5 Pisces Library Reference

allowReseed([ticks])
Perform a reseed in enough entropy is available.

reseed([ticks])
Use current entropy to generate new seed.

ThreadedYarrow()
This subclass of Yarrow adds locking on addInput, getOutput and allowReseed calls. This locking
is sufficient to make the class thread-safe.

EntropyGatherer(jobs, yarrow)
An EntropyGatherer runs a collection of system utilities periodically. Each instance is a
threading.Thread designed to be run via a start method. One instance should be created for
each collection of utilities that are run at the same period.

The arguments are: jobs, a description of the system utilities to run, and yarrow , a Yarrow instance
to feed the data to.

pad64(s)
Returns a copy s padded to 64 bits.

hash(x)
Returns the SHA digest of x .

hash ex(m, k)
Extend input m to k bytes using SHA digests.

5.10 pisces.ttls – Trivial transport-layer security

This package, which contains submodules config and protocol, implement a protocol loosely based on the
TLS protocol (RFC 2246). There is no reason to believe that this new protocol offers any of the security
guarantees of the real TLS protocol. It does use some of the same basic ideas, and it might be possible to
show that it is secure.

The protocol is intended as an example of how to define new SPKI-based applications. It will be documented
in a future release.

5.11 pisces.spkilib – SPKI package

The SPKI implementation is a contained in the pisces.spkilib sub-package. The core of the implemen-
tation, contained in pisces.spkilib.spki, defines Python objects for each of the SPKI/SDSI 2.0 objects
defined in the last draft of the structure document [1].

5.12 pisces.spkilib.config – Configuration and command-line argument handling

This module defines an Options class and several helper functions that are used by spki-
tool.py to process command-line arguments and establish the location of configuration files and the
pisces.spkilib.keystore.KeyStore. It can be used by other programs based on pisces.spkilib to
perform the same functions.

Further documentation is not yet available.

5.13 pisces.spkilib.database – Store keys and certificates in text file

This module defines a format for storing S-expressions in a text file. The file contains one or more base64-
encoded S-expressions. Comment lines begin with a #. The classes defined all include a human-readable

5.10 pisces.ttls – Trivial transport-layer security 15

description of the S-expression in a comment before the actual encoded object. Each type of database defines
some specific semantics for the object.

AbstractDatabase(path)
The AbstractDatabase class is the parent of all the specific database types. It implements two
general methods and requires that subclasses implement three other that describe the specific kind of
S-expressions that are supported.
The constructor argument path specifies the file that contains the database.
The two general methods are:

reload([create])
Load the contents of the database file into memory. If the optional create argument is non-zero,
succeed if the file does not exist; otherwise, an IOError will be raised if the file does not exist.

rewrite()
Save the current contents of the database into the database file.

The methods that must be implemented by subclasses are:
loadObject(obj)

Called for each S-expression in the file when reload is executed.
getObjects()

Called by rewrite. This method should return a list of all objects to be written out.
writeStorageHint(obj, io)

Called for each S-expression to be written out by rewrite. A hint for S-expression obj should be
written to the file-like object io.

DebugDatabase(path)
This method loads in an arbitrary database, but is not capable of rewriting it. It is useful for debugging
a database.

ACL(path[, create])
This class defines a file containing pisces.spkilib.spki.Entry objects. Each Entry is written with
two hints: the subject and the tag.
This class defines the following additional methods:
add(entry)

Add a new Entry object to the database.
lookup(subject)

Return all Entry objects that match subject .

CertificateDatabase(path[, create])
This class defines a file containing pisces.spkilib.spki.Cert objects, including name certs. Each
cert is written with two hints: the subject and issuer.
This class defines the following additional methods:
lookupBySubject(subject)

Return all certs that match subject .
lookupByIssuer(issuer)

Return all certs that match issuer .
add(cert)

Add a new cert cert to the database.
delete(obj)

Delete all certificates with issuer and subject fields that match obj .

PrincipalDatabase(path[, create])
A PrincipalDatabase stores public keys.
This class defines the following additional methods:

16 5 Pisces Library Reference

add(key)
Add the public key key .

lookup(p)
Return the key corresponding to hash p.

delete(p)
Delete a public key. Accepts a single argument p that can be either a key or its hash.

PrivateKeyDatabase(path[, create])
This class stores private keys. Unlike other database classes, it depends on the order of the objects
in the database file being preserved. It stores a collection of private keys and their associated public
keys. One of the keys is marked as the default key.

This class defines the following additional methods:

lookup(hash)
Return a private key for the principal hash. The hash is of the public part of the key pair.

setDefault(hash)
Make the private key for the principal hash the default key.

getDefault()
Return the hash of the public part of the default key.

add(pub, priv)
Add the key pair with public part pub and private part priv to the database.

listPublicKeys()
Return a list of all the public keys.

listPrivateKeys()
Return a list of all the private keys.

5.14 pisces.spkilib.keystore – Abstract storage interface for keys and certifications

getPrincipal(obj)
Return the principal associated with a SPKI object. The implementation either returns the object
directly, if it is a hash, or calls the object’s getPrincipal method.

KeyStore(path)
A KeyStore provides a high-level interface for a collection of keys and certificates stored in files. The
constructor takes a path argument that specifies the directory where the files are located.

A KeyStore uses three files: ‘keys’, ‘private’, and ‘certs’. Each file uses is read and written using
pisces.spkilib.database.

Each KeyStore has a default key that is used to create and resolve name certs.

close()
Calls the save method if changes have been made since the last save.

save()
Writes the contents of the KeyStore to files.

setDefaultKey(hash)
Make key with has hash be the default key. The KeyStore must already contain the private key.

getDefaultKey()
Return the hash of the default key.

addPrivateKey(key, pub, pword, [bogus])
Add a private key key with corresponding public key pub. The key is encrypted using password
pword and marked as bogus if the optional bogus argument is non-zero. The key is encrypted using
pisces.spkilib.spki.encryptWithPassword. The public key is not added to the database.

5.14 pisces.spkilib.keystore – Abstract storage interface for keys and certifications 17

addPublicKey(key)
Add the public key key .

addCert(cert)
Add the certificate cert to the database. A name cert should be added using addName.

addName(cert)
Add the name certificate cert to the database.

lookupKey(hash)
Return the public key corresponding to hash.

lookupPrivateKey(hash)
Return the encrypted private key corresponding to hash. The hash is of the public key.

lookupName(name[, namespace])
Return a list of certificates issued for name, which can be either an instance of
pisces.spkilib.spki.Name or a simple string. If name is a string, a public key or hash must
be supplied as the optional namespace argument.

lookupCertBySubject(subj)
Return all certificates with a subject matching subj .

lookupCertByIssuer(iss)
Return all certificates with an issuer matching iss. A certificate with a name in the issuer slot
matches when the name is identical to iss or iss is the principal at the root of a fully qualified
name.

listPublicKeys()
Return the hashes of all public keys in the KeyStore.

listPrivateKeys()
Return the hashes of all public keys corresponding to private keys in the KeyStore.

listCerts()
Return a list of all certificates in the KeyStore.

MultiKeyStore([readers, writers, both, private])
A MultiKeyStore instance provides a KeyStore-interface on top of several underlying KeyStore im-
plementations. It can be used to share a KeyStore among several users.

The constructor accepts objects implementing the KeyStore interface as arguments. It uses keyword
arguments to indicate whether a particular object should be read-only or read-write and whether it
should be used to store private keys. The readers argument accepts a list of objects that will be used
for lookups only. The writers argument accepts a list of objects that will be used for adds only. The
both argument accepts a list of objects that are used for lookups and adds. The private argument
accepts a list of objects that can be used to store private keys; a writer object will not be used for
private keys unless it is also in the private list.

5.15 pisces.spkilib.sexp – Support routines from S-expressions

This module defines public functions for manipulating S-expressions, and a collection of helper functions
that are used by by other modules in pisces.spkilib to create S-expressions for standard SPKI objects.

The SPKI structure draft [1] defines a canonical S-expression as follows:

“All SPKI structures communicated from one machine to another must be in canonical form. If canonical
S-expressions need to be transmitted over a 7-bit channel, there is a form defined for base64 encoding them.

“A canonical S-expression is formed from binary byte strings, each prefixed by its length, plus the punctuation
characters ()[]. The length of a byte string is a non-negative ASCII decimal number, with no unnecessary
leading 0 digits, terminated by :. The canonical form is a unique representation of an S-expression and is
used as the input to all hash and signature functions.”

18 5 Pisces Library Reference

parse(buf)
Parse the S-expression buf encoded in canonical form or in base64. Returns a SExp instance or raises
ParseError. Can raise ParseError.

parseText(buf)
Parse a human-readable version of an S-expression buf . The human-readable form is roughly equivalent
to the advanced form described in the struction document [1], but has some significant shortcomings.
It is not possible to use parseText to parse an S-expression that includes multi-line base64 output. It
is most useful for parsing simple S-expressions entered by users on a command line.

construct(elts)
Construct an S-expression from the Python sequence elts. Each element of elts must be a string or
another sequence.

SExp([canon], [repr])
The SExp class represents S-expressions. Instances behave like sequences, allowing you to access element
n of the S-expression using sx[n].

The constructor takes takes a single keyword argument. It must be either canon, a string containing the
canonical representation of the S-expression, or repr , a Python sequence representing the S-expression.
These two constructor forms are equivalent to calling the functions parse and construct below. User
code will be clearer if these functions are called.

The str method, called by str and print, converts the S-expression to a human-readable form.
The pretty-printer is not ideal, but it is better than nothing.

encode base64()
Return a string containing the base64 encoding of the S-expression.

encode canonical()
Return a string containing the canonical encoding of the S-expression.

ParseError
A ParseError is raised when parse is called with invalid data. The exception object contains three
attributes: exp, the data expected, got, the data actually found, and ref, the encoded data that
contained the error. The ref attribute may be None.

5.16 pisces.spkilib.sexpsocket – Send and receive s-exps over sockets

This module defines a socket wrapper SexpSocket that supports sending and receiving S-expressions over a
Python socket object. It supports simple buffering.

Further documentation is not yet available.

5.17 pisces.spkilib.spki – Core SPKI implementation

This module implements Python classes that correspond to SPKI object. The objects defined by SPKI are
S-expressions consisting of an object name and zero or more “parts.” This module defines a Python class
for each SPKI object, where the object name corresponds to the class name and the parts correspond to
instance attributes.

Each SPKI object is represented in Pisces by a subclass of SPKIObject. These classes have attributes for
each of the parts of the S-expression. Some classes also have methods for performing operations using the
data contained in the SPKI object; e.g. public-key objects have encrypt and decrypt methods.

SPKIObject()
This abstract base class defines the sexp method and several operators that rely on the S-expression
of an object.

5.16 pisces.spkilib.sexpsocket – Send and receive s-exps over sockets 19

The constructors for SPKIObject instances take a number of argument equal to the number of parts
in the S-expression, i.e. the number of parts following the object name.
sexp()

Returns a pisces.spkilib.sexp.SExp for the object.
The following methods use Python operator overloading. They should not be called directly but provide
support for Python builtin operations like repr, comparison, and use as a dictionary key.

repr ()
Returns the advanced form of the S-expression.

cmp (other)
SPKIObject instances are compared using the canonical S-expression encoding.

hash ()
The hash of an object is that hash of the canonical encoding of its S-expression.

The object names used by SPKI can not be used directly as Python class names because they contain
hyphens. They also clash with typical Python style which uses capital letters. SPKI object names are
converted to class names using the name to impl function.

name to impl(name)
Returns the class name corresponding to a SPKI object. Names are translated as follows: The SPKI
name is broken up into multiple components at each hyphen. The first letter of each component is
capitalized. If the first character of the first component is a number, an underscore is prepended. The
SPKI name * is translated as TagExpr.
For example, the SPKI name rsa-pkcs1-md5 is translated as RsaPkcs1Md5.

In some cases, the name returned by name to impl refers to a factory function that will produce instances
of the desired class. The factory functions are necessary when the class returned depends on some part of
the S-expression other than the object name.

There are several helper functions that convert from S-expressions to Python instances.

parse(buf)
Parse the canonical S-expression buf and return a SPKIObject instance. Uses
pisces.spkilib.sexp.parse.

parseText(s)
Parse the human-readable S-expression s and return a SPKIObject instance. Uses
pisces.spkilib.sexp.parseText.

Evaluator(*namespaces)
An Evaluator instance is used to translate from S-expressions to Python objects. It contains one or
more namespaces that map from SPKI object names to factory functions and classes. The optional
namespaces arguments must support the mapping protocol.

eval(s, [tag])
Returns a SPKIObject corresponding to the pisces.spkilib.sexp.SExp. It uses an Evaluator in-
tialized with the current module’s namespace.

The module defines the following utility functions:

isPrincipal(obj)
Return true if obj is a public key or hash.

encryptWithPassword(object, pw[, bogus])
Return a PasswordEncrypted instance containing an encrypted copy of object . The encryption is
performed using the PBES2 scheme defined by PKCS #5 using pw as the password, a triple DES in
CBC mode as the cipher.
If the optional argument bogus is specified, the object is marked as using a bogus password. This is
useful only for testing purposes.

20 5 Pisces Library Reference

getTime([t])
Return a time in SPKI format. If t is specified, it must be a numer representing the current Unix
time, e.g. as returned by time.time. If t is not specified, the current time is returned.

checkTime(t)
Returns true if t is a syntactically valid SPKI time.

getIssuerAndSubject(obj [warning])
Retrieve issuer and subject from obj , which may be a Sequence containing a cert. This function will
search through a sequence looking for a cert object or use a cert object passed directly.

extractSignedCert(seq)
Extract a cert and its signature from a sequence.

makePublicKey(impl)
Return a PublicKey SPKI object from impl , an instance of pisces.pkcs1.RSA pkcs1. By default,
produces an rsa-pkcs1-md5 key.

makePrivateKey(impl)
Return a PrivateKey SPKI object from impl , an instance of pisces.pkcs1.RSA pkcs1. By default,
produces an rsa-pkcs1-md5 key.

setHashAlgorithm(alg)
Change the hash function used by makePublicKey and makePrivateKey to the algorithm identified by
alg , a pisces.asn1.OID.

makeRSAKeyPair(bits)
Create a new bits-bit RSA key pair. Return two values, the public and private components. Uses
makePublicKey and makePrivateKey.

RSAKeyMaker([algid])
The functions makePublicKey and makePrivateKey are defined by a default instance of RSAKeyMaker.
This class, which is instantiated with the OID of a hash function, generates keys that use that hash
function for signing.

makePublicKey(impl)
See the function makePublicKey.

makePrivateKey(impl)
See the function makePrivateKey.

makeCert(issuer, subject, tag[, propagate [, valid]])
Create a SPKI cert. The issuer and subject must be principals; the function will wrap them in issuer
and subject S-expressions. If the propagate keyword arg is true, a propagate entry will be added to
the cert. If the valid keyword argument is supplied, it should contain a sequence of validity constraints,
e.g. not-before, not-after, and online.

makeNameCert(issuer, subject, name[, valid])
Create a SPKI name cert binding the string name to subject in issuer ’s namespace. The valid keyword
argument should contain one or more validity constraints.

makeAclEntry(subject, valid, propagate, permissions)
Return a Entry object for an access control list. An Entry is like a Cert, but without an issuer.

The rest of this section describes the Python classes that correspond to SPKI objects.

Many of the SPKI objects defined in this module do not have methods associated with them. They do
define attributes, which are themselves SPKI objects or strings. These objects include Hash, Signature, Do,
and Name. Other objects are always contained by another object; e.g. RSAPublicKey is always used as a
component of PublicKey. The contained classes are not documented.

PublicKey(key)

5.17 pisces.spkilib.spki – Core SPKI implementation 21

The implementation delegates all calls to the contained RSAPublicKey object, which in turn delegates
to a pisces.pkcs1.RSA pkcs1 object.

verify(obj, sig)
Verify that the Signature sig matches obj .

getPrincipal()
Return the principal (hash) of the key.

encrypt(plain)
Return a string containing plain encrypted with the key.

decrypt(cipher)
Return a string containing the plain text recover from decrypting the string cipher with the key.

PrivateKey(key)
The implementation delegates all calls to the contained RSAPrivateKey object, which in turn delegates
to a pisces.pkcs1.RSA pkcs1 object.

sign(obj)
Return a Signature object for the SPKI object or string obj .

getPrincipal()
Return the principal (hash) of the public key.

getPublicKey()
Return the public key that corresponds to this private key.

encrypt(plain)
Return a string containing plain encrypted with the key.

decrypt(cipher)
Return a string containing the plain text recover from decrypting the string cipher with the key.

Sequence()
Behaves like a Python sequence.

Valid()
subclasses NotBefore, NotAfter, Online

isValid()

Cert() getTag()

isValid()

isNameCert()

getSubject()

getIssuer()

SignedCert(cert, sig) getSequence()

verifySignature(keydb)

Issuer() isName()

getPrincipal()

Subject() isName()

getPrincipal()

Entry() getTag()

22 5 Pisces Library Reference

isValid()

Keyholder() getPrincipal()

Tag()
supports nonzero , cmp , and

intersect(atag)

TagExpr()
note: realy TagExpr

subclasses TagStar, TagSet, TagRange, TagPrefix

copy()

contains()

intersect()

TagSet() add(arg)

AppTag() copy()

XXX need to define SPKI-style bnf for password-encrypted pbes2-hmac 3des-cipher

PasswordEncrypted() getKey([pw])

decrypt([pw])
isBogus()

Pbes2Hmac() getKey(pw)

3desCipher() decrypt(key)

5.18 pisces.spkilib.verify – Certificate chain verification

This module processes a collection of certificates to yield an authorization result. The SPKI theory RFC
[2] describes a tuple-reduction process as an example. The Pisces implementation uses a search mechanism
that has the same semantics.

This module is a little out of date. It uses the pisces.spkilib.database interface instead of the higher-level
pisces.spkilib.keystore interface. It will be revised before the final version 1.0 release.

Verifier(acl, certs, keys)
A Verifier uses an access control list acl , a collection of certificates cert , and a collection
of public keys keys to make access control decisions. Each argument should be a database
from pisces.spkilib.database: acl is a ACL, cert is a CertificateDatabase, and keys is a
PrincipalDatabase.

verify(prin, perm[, delegate])
Find a valid certificate chain from an ACL entry to the prinicipal prin that grants permission
perm.
This method searches through the collection of certificates to find a valid chain from an access
control list entry to the principal making the request. The return value is a sequence of certificates
forming a valid chain. The first entry in the sequence is a pisces.spkilib.spki.Entry object.

5.18 pisces.spkilib.verify – Certificate chain verification 23

Each subsequent element will be a certificate delegating some permissions from the previous
element to the next element. The last element will delegate permissions to the principal.
There is a delegate argument, because there can not be more than one non-delegate-able certifi-
cate between a valid delegate-able certificate and the principal requesting permission. That one
certificate is the one that grants permissions to the principal, but doesn’t allow the principal to
delegate further. The delegate flag should always be true when called recursively.

ReferenceMonitor(acl, certs, keys)
A ReferenceMonitor provides a simpler interface to a Verifier. The constructor arguments for
ReferenceMonitor are the same as for Verifier.

checkPermission(caller, perm)
Check to see if principal caller has permission perm by calling Verifier.verify. Raises
SecurityError if the permission does not exist. Returns None otherwise.

SecurityError()
Raised by ReferenceMonitor when checkPermission fails.

A Installation

You need to have the following software installed:

• Python 1.5 or higher.

You can download Python from http://www.python.org/download.

• distutils 0.8 or higher

You can download distuils from http://www.python.org/sigs/distutils-sig/download.html.

• OpenSSL 0.9.5 or higher

You can download OpenSSL from http://www.openssl.org/source/. This package is not used directly by
Pisces. Rather Pisces uses amkCrypto, which requires OpenSSL.

• amkCrypto-0.1.2 or higher

You can download it from ftp://starship.python.net/pub/crew/amk/crypto/.

The top-level Pisces directory contains two scripts. The first test.py will run some tests to make sure that
the Pisces libraries are working and that all the other software packages that are required have been installed.
(The test framework will probably improve in future releases.)

The other script is setup.py. This is an install script written using distutils. To install Pisces so that it is
available for use from Python, run ./setup.py install.

References

[1] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian M. Thomas, and Tatu Ylonen. Simple
public key certificate. Distributed as Internet Draft draft-ietf-spki-cert-structure-06.txt., July 1999.

[2] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian M. Thomas, and Tatu Ylonen. SPKI
certificate theory. RFC 2693, September 1999.

[3] Jerome H. Saltzer and Michael D. Schroeder. The protection of information in computer systems. Pro-
ceedings of the IEEE, 63(9):1278–1308, September 1975.

24 References

	1 Introduction
	2 An Example
	3 Command-Line Utility: spkitool.py
	3.1 spkitool.py command reference

	4 Other command-line scripts
	4.1 pyarrowd.py command reference

	5 Pisces Library Reference
	5.1 pisces.algid -- Constants for PKCS #1 AlgorithmIdentifiers
	5.2 pisces.asn1 -- Encode and decode ASN.1 BER format
	5.3 pisces.cryptrand -- Interface to cryptographic random number generators
	5.4 pisces.egdlib -- Interface to the Entropy Gathering Daemon
	5.5 pisces.hmac -- Keyed-hashing for message authentication
	5.6 pisces.pkcs1 -- A PKCS #1 wrapper for Crypto.PublicKey.RSA keys
	5.7 pisces.pwcrypt -- Support for password-based cryptography (PKCS #5)
	5.8 pisces.utils -- Internal pisces utility functions
	5.9 pisces.yarrow -- Yarrow random number generator
	5.10 pisces.ttls -- Trivial transport-layer security
	5.11 pisces.spkilib -- SPKI package
	5.12 pisces.spkilib.config -- Configuration and command-line argument handling
	5.13 pisces.spkilib.database -- Store keys and certificates in text file
	5.14 pisces.spkilib.keystore -- Abstract storage interface for keys and certifications
	5.15 pisces.spkilib.sexp -- Support routines from S-expressions
	5.16 pisces.spkilib.sexpsocket -- Send and receive s-exps over sockets
	5.17 pisces.spkilib.spki -- Core SPKI implementation
	5.18 pisces.spkilib.verify -- Certificate chain verification

	A Installation

