An Architecture for Digital Object Typing

Christophe Blanchi, Jason Petrone

Corporation for National Research Initiatives
Reston, Virginia 20191

{cblanchi, jpetrone}@cnri.reston.va.us

Abstract

Though the Internet provides a powerful platform
for distributed access to data, current standards fail
to encompass management of complex information.
The ability to mediate between heterogeneous infor-
mation formats is a key foundation on which more
powerful information systems can be built. This pa-
per outlines our efforts in creating a digital object
architecture that facilitates the management of dis-
tributed heterogeneous information. The key features
of the architecture are: (i) the ability to aggregate
multiple data sources and relevant processing ser-
vices into a single logical entity; (ii) a flexible, dis-
tributed, digital object typing mechanism; and (iii)
support for dynamic aggregation of information pro-
cessing Services.

1 Introduction

The Web’s rapid growth has made the task of finding
and interacting with content increasingly difficult.
Although simple access of web content is generally
straightforward, programmatic interaction with web
applications requires extensive coordination between
the content provider and recipient. This results
largely from the scarcity of standards for describing
complex digital content. Distributed object tech-
nologies, such as CORBA, RMI, and WSDL/SOAP
provide a convenient platform for building transport
transparent APIs, but do not address the greater
problem of information-level interoperability. To
achieve this degree of interoperability, system de-
velopers must create new protocols for each type of
information exchange. While current efforts such as

This research is supported by the Defense Advanced Research
Project Agency (DARPA) on behalf of the Digital Libraries
Initiative under Grant No. N66001-98-1-8908.

Copyright © 2001 Corporation for National Research Initiatives

ebXML[Org01] and Microsoft’s BizTalk[Mic00] at-
tempt to address this need for exchange protocol
definition, they primarily deal with creation of static
protocols that can not proliferate in an automated
fashion. In this paper we introduce an architecture
that facilitates management of heterogeneous infor-
mation through the use of a dynamic and distributed
digital object typing mechanism.

We at CNRI have been researching information-
centric architectures for managing content and ser-
vices in the context of distributed networked en-
vironments. Our research originated in the digi-
tal library community where we developed experi-
mental digital object systems with the Library of
Congress[ABL97] and Defense Technical Informa-
tion Center[DVL]. Although our work was first
geared to solving specific digital library problems
such as the need for Universal Resource Names
(URN)[ADD'96] and mechanisms for aggregating
data with metadata, the resulting architecture ad-
dresses issues present in general distributed infor-
mation management[xiw97, KL01].

Our implementation provides a general framework
and methodologies for interaction with content and
services within a distributed network environment.
At the center of this architecture is the notion of
the digital object— a uniquely identified data ab-
straction that encapsulates content and access poli-
cies while providing a high level, self-describing, type
definition. Digital objects are described through the
use of an abstract typing mechanism that we refer
to as a content type. Content types describe the in-
tents of use that a digital object creator has for the
object by defining the finite set of views that can
be acquired from it. These views are referred to as
disseminations of digital objects.

The following sections describe the various com-
ponents of the digital object architecture, further
define the notions of content types, and explain the
concept of digital object chaining.

2 Digital Object Architecture

The digital object architecture defines a core set of
services for identification, access, and management
of digital objects. These services represent the min-
imum functionality required for interoperability.

In our current implementation, digital objects and
other elements within the architecture are uniquely
identified using the Handle System™[SL03]. The
Handle System™ is a comprehensive persistent
naming system. Identifiers within the Handle
System™ are called “handles”. We use handles
within the architecture for their ability to provide
globally unique persistent identification and location
independent references.

2.1 Digital Object Repositories

A digital object repository exposes an external inter-
face for creation, modification, and access of digital
objects, as well as assuming storage responsibilities.
Repositories enforce the access policies that pertain
to each digital object and provide a safe environment
for generation of content type disseminations of dig-
ital objects. Repositories also provide the necessary
functionality for creating new digital object content
types. There is no limit to the number of repositories
that may coexist within the architecture.

Repositories themselves are digital objects. This
enables them to provide additional services through
the use of disseminations. For example, a repository
could allow disseminations of indices of its metadata
or of administrative information, such as server logs.

In our interoperability experiments with
Cornell[PL98, PBLO99], we defined the minimum
required interface and protocol specifications needed
to guarantee interoperability between independent
repository implementations. The specifications
allow for a great degree of flexibility in repository
implementation and storage facilities. Digital object
repositories have been implemented using object
oriented databases, relational databases[SR00],
and simple file system storage with no perceptible
change in behavior.

2.2 Repository Access Protocol

The Repository Access Protocol(RAP) is used to
access repositories and their respective digital ob-
jects. RAP includes operations for creation, dele-
tion, modification, metadata access, and dissemina-
tion of digital objects. RAP has been defined using
CORBA IDL[Obj99] and as a binary protocol on top
of TCP/IP connections.

The location of a repository is specified in RAP in
the form of a handle. A repository’s handle resolves
to the information required by a client to establish
a connection. Repositories using the CORBA in-
terface have a CORBA object reference called an
IOR stored in their handle. Repositories accepting
connections via TCP/IP have an IP address or host
name stored in their handle.

2.3 Digital Objects

Digital objects provide the primary form of infor-
mation representation within the architecture. The
original notions of digital objects were first described
in “A Framework for Distributed Digital Object
Services” [KW95] and were further developed in sub-
sequent research[PL98, ABL97, BP01].

At an abstract level, digital objects are uniquely
identified network entities that encapsulate, de-
scribe, and provide value-added access to data. Digi-
tal objects are managed using the operations defined
in the RAP protocol. Digital objects can be used to
aggregate multiple elements of relevant data, so that
complex, multi-part information may be managed as
a single entity. This is a useful feature for implemen-
tation of security policies, mirroring, and archiving.
Clients accessing these complex digital objects typ-
ically do not retrieve the entire object all at once.
Instead, clients can request specific disseminations
of a digital object based on individual needs and ac-
cess permissions.

Digital objects are identified using handles. A
digital object’s handle resolves to the handle of the
repository that contains its respective digital object.
Creators of digital objects may also elect not to as-
sign a handle to a digital object and instead use an
arbitrary identifier. Accessing a digital object with-
out a handle requires prior knowledge of the reposi-
tory in which it resides.

All digital object RAP read operations are re-
ferred to as digital object disseminations. Within
this general notion of digital object dissemination,
we identify two separate classes, primitive dissemi-
nations and content type disseminations.

Primitive disseminations provide direct access to
the contents and attributes of the digital object as
they were deposited into the object. Unlike con-
tent type disseminations, primitive disseminations
are not extensible. The full set of primitive digital
object disseminations is shown in Table 1.

Content type disseminations provide intent-of-use
based access to a digital object. They provide a view
of a digital object’s content that is independent of its

’ Operation \ Description

CreateDataStream | Attaches a typed byte stream to the digital object.

GetDataStream Retrieves an attached data stream and its associated metadata from the
digital object.

DeleteDataStream | Deletes an attached data stream from the digital object.

ListDataStreams Returns a list of data streams attached to the digital object.

GetDissemination Invokes a content type dissemination on the digital object and returns
the resulting data.

CreateDisseminator | Creates a content type disseminator for the digital object by associating
a set of data streams with the handle for a specific content type.

DeleteDisseminator | Removes a content type disseminator from the digital object.

ListDisseminators Returns a list of content type disseminators for the digital object.

Table 1: PRIMITIVE DIGITAL OBJECT DISSEMINATIONS

Identifier I

Disseminator

Identifier |

Disseminator

Type Signature
Servlet Attachments

v v
|
Element

Figure 1: DicGITAL OBJECT STRUCTURE

content-specific encoding or underlying complexity.
A content type can be bound to a digital object by
its creator. When a content type dissemination of
the digital object is requested, the content type exe-
cutable is executed within the context of the object,
where it can generate a content type dissemination
from the object’s data.

Digital objects achieve all their functionality
through the use of two internal data structures: data
elements and disseminators. An illustration of the
structures of a digital object can be found in Figure
1.

Data elements store sets of sequences of bytes
within a digital object. Each digital object can have
any number of uniquely identified data elements.
Each data element maintains its set of byte streams,
as well as a few minimal metadata fields: data type,
stream length, date created and date last modified.
Client interaction with data elements occurs over

RAP through the use of primitive disseminations.

A disseminator is a structure that binds a content
type to a set of data elements within a digital object.
A separate structure is needed so that different con-
tent types can be associated with arbitrary permu-
tations of the same data elements. A digital object
can have any number of uniquely identified dissem-
inators. Each disseminator can be bound only to a
single content type, though multiple disseminators
within a digital object may be bound to the same
content type. The data elements associated with a
disseminator are referred to as disseminator attach-
ments.

3 Content Types

As described in the previous sections, digital objects
are typed with what we refer to as content types.
Content types represent a flexible mechanism for
loose association of data with relevant distributed
services. A content type is defined as a set of oper-
ations used to act on a particular class of content.
Each operation has a semantically relevant name, as
well as a human readable description of its purpose.

Content type operations receive input from two
sources: input parameters and digital object data
elements. An operation receives the data for its
input parameters from incoming dissemination re-
quests. The entity requesting the dissemination pro-
vides these parameters. Each parameter has a se-
mantically relevant name and a human readable de-
scription of its relation to the functionality of the
operation.

An content type operation has access to data ele-
ments as the streams of raw content contained within
the digital object to which the content type is ap-
plied. An operation refers to data elements using

an identifier called a role. This identifier is defined
by the content type creator and is understood by
creators of digital objects that use the content type.
The creator of a digital object associates attached
data elements with a particular role. The content
type uses a data element’s role to distinguish it from
other elements within the digital object.

Operation parameters, data elements, and dissem-
ination results are all typed using traditional data
types. These data types include primitive types such
as integer, byte arrays, and character strings, as
well as higher level representations such as MIME
types[FB96].

This technique of data typing bears some resem-
blance to MIME, a standard designed to facilitate in-
teroperability in Internet email attachments. How-
ever, there are a number of differences between
MIME and digital object content types. MIME
types are concerned with expressing the particular
structure within a set of bytes, while content types
denote the manner in which the data is to be used, ir-
respective of representation format. For example, an
SGML file containing the script for the play Hamlet
would have a MIME type of text/sgml. Since
SGML is a generic file format and requires a separate
document type definition (DTD) file for interpreta-
tion, the MIME type in of itself does not provide any
context for interpreting the contents of the file. A
content type for this same script could be “Script”
or even as specific as “ShakespereanDrama”’. These
content types could define operations for accessing
the content by retrieving a single act or providing
a version of the play typeset in a manner consis-
tent with the plays genre. The MIME type does
not provide any aid for understanding how to make
advanced usage of the play, and it would require
a knowledgeable person to acquire the appropriate
tools to do so.

While both MIME types and content types are
registered with unique identifiers, the process of reg-
istration for each differs greatly. MIME registra-
tion requires submitting a proposal to the Inter-
net Engineering Steering Group (IESG) for peer
review[FKP96]. Registration of a MIME type is
contingent upon IESG approval. To prevent the
MIME type registry from becoming overburdened,
few MIME types are adopted as standards.

Unlike MIME type registration, content type reg-
istration is dynamic. Content types are registered
using the Handle System so that the registry may
be distributed. This allows for registration of many
content types without the scalability problems of a
centralized index. It also allows for content type

(Hamlet

DataStream1
DC Metadata (text/xml)

DataStream0
Script (text/sgml)

Figure 2: DIGITAL OBJECT FOR HAMLET

providers to independently administer their own reg-
istries. This means individual organizations can
globally register content types with autonomy.

Content types are represented in two parts, a type
signature and a servlet. A type signature defines the
exact set of views that can be disseminated from a
digital object. More specifically, a type signature
provides an abstract definition of the operations that
a client can request using content type dissemina-
tion. It is a static structure containing only names
and descriptions of the methods and parameters.
Type signatures are stored within digital objects and
are uniquely identified with handles. The handle for
a type signature resolves to the handle of the digital
object in which it resides.

A servlet implements the operations defined in one
and only one type signature. The servlet provides
the executable program that a digital object uses to
generate content type disseminations. As with the
type signature, the servlet has its own unique han-
dle. This handle resolves to the location within the
digital object architecture where the servlet resides.

Separating the interface from the implementation
makes it possible to provide a consistent interface
for functionally similar digital objects with different
underlying structures. Even though the internal rep-
resentation of the information could be dramatically
different, the access interface remains consistent.

In the ShakespereanDrama content type we dis-
cussed earlier, the internal format of the data
was SGML. Another digital object could use the
ShakespereanDrama type, but with a servlet that
operates on IATEX formatted text using a special
stylesheet instead. Even though the internal rep-
resentation of the information is dramatically differ-
ent, the access layer remains consistent. An illustra-
tion of this example can be found in Figure 2.

After a new content type’s signature and associ-
ated servlets are written, they are assigned handles
and deposited into their own digital object. The
handle values for the type signature and servlet con-
tain the information necessary to locate them from
within the architecture. From that moment onward,
the rest of the system has the ability to acquire and
use the new content type. A digital object creator
can associate the new content type with a dissemina-
tor by referencing the handles of the content type’s
type signature and servlet.

In experimenting with the digital object content
types in the context of our architecture, we have
demonstrated that they can facilitate homogeneous
interaction with complex heterogeneous data types
in a flexible and standardized manner.

4 Digital Object Chaining

The functionality of a digital object can be ex-
tended by sequentially chaining digital objects with
each other. This works much like command piping
in Unix-like operating systems[Joy86]. The output
from a digital object dissemination is used as the in-
put for the dissemination of another digital object.
Digital object chains can be predefined in order to
provide a composite service built from multiple spe-
cial purpose components. Clients wishing to obtain
functionality not explicitly provided by the existing
content types can also create chains on the fly. Fur-
thermore, it is possible for a digital object to dy-
namically discover new chain combinations so that
it may offer new operations as the system expands.
As described in section 2, digital objects can ag-
gregate content in two forms. Content can be stored
in its raw form, inside the digital object. The data
element for the content contains the bytes that make
up the content, just as it would be stored on disk in a
file. Digital objects can also store references to other
digital objects as data elements. For example, an
object that analyzes weather data could have a data
element that is a reference to a digital object that
acquires weather data. When the weather analysis
object is accessed, the repository performs a content
type dissemination on the weather acquisition object
and attaches the result of that dissemination to the
servlet. Using this technique, different stages in a
data transformation process can be compartmental-
ized to promote reuse and individual management.
Reference data elements are somewhat limited in
that they are defined at the time the object is cre-
ated. It is often desirable to specify a sequence of
disseminations independent of the structure of the

digital objects involved. Less static chaining can be
accomplished by writing servlets that can retrieve
digital object dissemination on their own. Rather
than relying on the repository to dynamically at-
tach the data, servlets implemented in this fashion
can retrieve different disseminations depending on
the given context.

Consider the digital object containing the play
Hamlet written in English. This object could be
chained with an object that generates play summa-
rizations. The output from the summarization ob-
ject could then be then fed into a German transla-
tion digital object. In this manner, a summary of
Hamlet in the German language could be generated,
even though the original digital object was not ex-
plicitly designed to provide this functionality.

To facilitate this aggregation, the use of a special
chaining object is required. When a dissemination
of the chaining object is invoked, the methods from
different digital objects are disseminated in succes-
sion, passing along the data down the chain. The
technique is illustrated in Figure 3.

In this example, Hamlet is stored in a chaining
digital object of type EnglishText, which provides
the operation SummarizeInGerman(). The opera-
tion first invokes a dissemination of the summariza-
tion object using the text of Hamlet as a parameter.
The method then invokes a dissemination of the Ger-
man translation object using the results from the
summarization dissemination as an argument. This
effectively aggregates the functionality provided by
the translation and summarization objects in a man-
ner transparent to the user.

A more difficult means of aggregating digital
objects is by manually chaining at time of use. Con-
tinuing with the Hamlet example, consider the case
where the digital object’s creator does not include
desired functionality. The object containing Hamlet
may provide operations SummarizeInEnglish(),
and SummarizeInFrench(), but not
SummarizeInGerman(). Since the client wish-
ing to obtain a German summary may not have
sufficient system access to modify the object to
include this operation, chaining must be done using
a different technique. In this situation, a special
utility chaining object can be used to manually con-
nect digital objects. This run-time chaining would
ideally be accomplished using a GUI application
that could provide visual feedback to the user as
digital objects are connected.

In addition to the methods of chaining described
above, the possibility exists for digital objects to dis-
cover and dynamically build chains based on infor-

Chaining Digital Object

Input Out

put
From To Client
Client

Digital

Object
A B

Digital
Object

Digital
Object
C

Figure 3: USING THE CHAINING MECHANISM

mation found within the operation descriptions for
digital object types. Each operation in a digital ob-
ject type specifies its input requirements as MIME
typed data streams and basic primitive values such
as integers and booleans. A human readable descrip-
tion is also included for each input. For output spec-
ifications, the digital object provides a human read-
able description as well as a list of all possible MIME
types that it may return as output. Chains are built
dynamically by linking digital objects where the out-
put from any given object within the chain satisfies
the input restraints of the subsequent object.

Because the information describing content types
is limited, there is no guarantee that a hypotheti-
cal chain will execute correctly or produce valid re-
sults. Chains should be viewed as possibilities and
must be subject to manual review before execution.
The manual review could be accomplished within an
interactive tool, by presenting human readable de-
scriptions of the state of the data as it moves through
the chain. This should provide enough evidence for
a user to determine if a chain is likely to produce
valid results. Figure 4 shows an example of such a
utility.

5 Future Work

In addition to refining the foundation of the archi-
tecture laid out in the previous sections, we are also
working on extending the system to encompass other
functionality useful in distributed information man-
agement.

Though we do not directly address security in
this paper, we’re working on implementing an ex-
tensible security layer for the architecture. There
are several facets to security that we must address.
The architecture should provide for authentication,
which involves assigning client identities and sup-
plying the means for determining those identities at
a later time. Security also involves authorization.
Once an identity for a client has been determined,

the system must have a way to specify what sys-
tem operations the client is allowed to perform. It
is important for this functionality to operate at the
digital object level so that the information the object
holds is protected and not just the channel used to
access it[KL97], as is the case with end-to-end secu-
rity systems. To maintain the level of extensibility
the system provides, each digital object should be
able to provide its own security mechanisms, inde-
pendent of the repository in which it resides[PL00].
Since a digital object may not fully trust its host
repository, the object must also be capable of hav-
ing its contents encrypted while carrying references
to the mobile code needed for decryption.

It is our goal to design an extensible security
framework that allows for the coexistence of diverse
cryptographic and rights management mechanisms.
This framework will provide for the protection of
both digital objects and the repositories that con-
tain them.

Digital object replication and mirroring is another
area we are beginning to explore. Since digital ob-
jects can be easily moved between repositories, we
must develop strategies for optimal replication and
migration. At the present time, repositories have the
ability to perform migration and replication tasks,
but only when explicitly instructed to do so. The
system design permits much richer, dynamic forms
of digital object movement. Digital objects can move
from repository to repository in order to optimize
access and to provide load balancing. However, this
additional movement introduces concurrency issues.
We are now investigating possible schemes for effec-
tive caching and replication of digital objects.

6 Conclusion

This document describes an architecture that al-
lows for interoperability of high level information.
By typing information based on intent of use, and
not just encoding, it is possible to access and

OO0 Repository Chain Builder &
Digital Ohject Input Description Input Type || Qutput Description | |COutput Type
Hamlet Object M/ & R The script to Hamlet textfplain =
Summarization Ohject & test to summarize textplain A summarization textplain
German Translation Ohject English text text/plain German translation text/plain v

This chain will return a GERMAN TRAMSLATION of
a SURMMARIZATION of THE SCRIPT TG HARMLET,

E=ecute Chain

Cancel

Figure 4: TOOL FOR MANIPULATING CHAINS

manage heterogeneous content in a consistent fash-
ion. We have applied a prototype of this system
to the Library of Congress’ National Digital Li-
brary project[ABL97]. An implementation of the
architecture is also currently in use for the De-
fense Technical Information Center’s Defense Vir-
tual Library[DVL]. The interoperability and ex-
tensibility of the system has been demonstrated in
a series of experiments conducted in conjunction
with the Digital Library Research Group at Cor-
nell University[PL98, PBL0O99]. These projects have
clearly demonstrated the potential of the architec-
ture to simplify access and exchange of heteroge-
neous information.

References

[ABL97] W.Y. Arms, C. Blanchi, and C. Lagoze.
An architecture for information in digi-
tal libraries. D-Lib Magazine, February

1997.

[ADD*96] W. Arms, L. Daigle, R. Daniel, D. Lal-
iberte, Michael Mealling, Keith Moore,
and Stuart Weibel. Uniform resource
names: A progress report. D-Lib Maga-
zine, February 1996.

[BPO1] C. Blanchi and J. Petrone. Distributed
interoperable metadata registry. D-Lib
Magazine, December 2001.

[DVL] Defense Technical Information
Center. Defense Virtual Library.
http://dvl.dtic.mil.

[FB96] N. Freed and N. Borenstein. Multipur-

pose internet mail extensions (MIME)

[FKP96]

[Joy86]

[KL97]

[KLO1]

[KWO5]

[Mic00]

[Obj99)]

part two: Media types. Request for Com-
ments 2046, Internet Engineering Task
Force, November 1996.

N. Freed, J. Klensin, and J. Postel.
Multipurpose internet mail extensions
(MIME) part four: Registration proce-
dures. Request for Comments 2048, In-
ternet Engineering Task Force, Novem-
ber 1996.

W. Joy. An introduction to the c shell.
In UNIX User’s Supplementary Docu-
ments, volume 1. Computer Systems Re-
search Group, Department of Electri-

cal Engineering and Computer Science,
April 1986.

U. Kohl and J. Lotspiech. Safeguarding
digital library contents and users: Pro-
tecting documents rather than channels.
D-Lib Magazine, September 1997.

R. Kahn and P. Lyons. Representing
value as digital objects. a discussion of
transferability and anonymity. D-Lib
Magazine, May 2001.

R. Kahn and R. Wilensky. A frame-
work for distributed digital object ser-
vices. Unpublished manuscript, Corpo-
ration for National Research Initiatives,
Reston, Va., May 1995.

Microsoft Corporation. BizTalk Frame-
work 2.0: Document and Message Spec-
ification, December 2000.

Object Management Group. The Com-
mon Object Request Broker: Architecture
and Specification, October 99.

[Org01]

[PBLO99)

[PLOS]

[PLOO]

[SLO3]

[SROO]

[xiw97]

Organization for the Advancement
of Structured Information Standards.
ebXML Technical Architecture Specifica-
tion, February 2001.

S. Payette, C. Blanchi, C. Lagoze, and
E. Overly. Interoperability for digi-
tal objects and repositories - The Cor-
nell/CNRI experiments. D-Lib Maga-
zine, May 1999.

S. Payette and C. Lagoze. Flexible and
extensible digital object and repository
architecture. 1998.

S. Payette and C. Lagoze. Policy carry-
ing, policy-enforcing digital objects. In
Proceedings of the Fouth Furopean Con-
ference on Research and Advanced Tech-
nology for Digital Libraries, 2000.

S. Sun and L. Lannom. Handle
system™ overview. Internet draft, In-
ternet Engineering Task Force, January
2003.

T. Staples and Wayland R. Virginia dons
FEDORA: A prototype for a digital ob-
ject repository. D-Lib Magazine, July
2000.

Managing access to digital infomation:
An approach based on digital objects
and stated operations. Technical report,
May 1997.

